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本日の内容

1. 一般化線形回帰モデル

2. 不均一分散の検定
2.1. Breusch-Pagan検定
2.2. White検定
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古典的線形回帰モデル
yi を xi に単回帰することを考える．これまでに登
場した線形回帰モデル

yi = β0 + β1xi + ui,

E(ui | xi) = 0,
E(uiu j | xi) = 0 (i ̸= j),

V(ui | xi) = σ2,

i = 1, 2, · · · , n

は，古典的線形回帰モデル．

⇓
誤差項 ui の条件付き分散が一定．
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一般化線形回帰モデル
ここで，誤差項 ui の条件付き分散が，個体によって
異なる（一定でない）と仮定する．
単回帰の場合，V(ui | xi)が一定でないとした一般
化線形回帰モデル（Generalized Linear Regression
Model）は，

yi = β0 + β1xi + ui,

E(ui | xi) = 0,
E(uiu j | xi) = 0 (i ̸= j),

V(ui | xi) = σ2
i ,

i = 1, 2, · · · , n.
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重回帰の場合の古典的線形回帰モデルと
一般化線形回帰モデル

▶ 重回帰の場合の古典的線形回帰モデルは，

y = Xβ + u,

E(u | X) = 0,
V(u | X) = σ2In.

▶ 重回帰の場合の一般化線形回帰モデル
（Generalized Linear Regression Model）は，

y = Xβ + u,

E(u | X) = 0,
V(u | X) = Σ.
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不均一分散

▶ V(ui | xi)が一定でないことを（条件付き）不
均一分散（heteroskedasticity）という．

▶ e.g.,年収を修学年数に回帰するモデルにおいて，
修学年数（学歴）によって個人の能力のばらつき
が異なり，それが年収のばらつきの違いを引き起
こす，など．

▶ 不均一分散があると，V(ui | xi)が一定である
と仮定して計算したデフォルトの標準誤差が
正しくないため，それを用いて計算した検定統
計量による仮説検定を正しく実行できない．
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頑健標準誤差
▶ V(ui | xi)が一定であることや E(uiu j | xi)が 0
であることを仮定せずに求める標準誤差を頑
健標準誤差（robust standard error）という．

▶ 不均一分散があっても，（古典的線形回帰モデ
ルを推定して）頑健標準誤差を計算すれば，標
準誤差をより厳密に求め，仮説検定をより厳密
に行うことができる．

▶ gretlでは，例えばWhiteの頑健標準誤差などを
出力できる．

▶ 「gretl: モデル推定」ダイアログボックスの，「頑
健標準誤差を使用する」をチェックすればよい．
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▶ 経済学分野の実証分析では，誤差項 ui に不均
一分散があることを前提として頑健標準誤差
を計算する場合が多い．

▶ 頑健標準誤差のほうがデフォルトの標準誤差
より大きくなることもあれば，小さくなること
もある．
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二乗項を含むミンサー方程式の推定
年齢によって 1年働くことによる年収の増え方が異
なることをコントロールしたうえで，「修学年数が
増えると，年収がどれだけ増えるのか」を分析する
ためのモデル（ミンサー方程式）

ln incomei = β0 + βYyeduci + βEexperi + βEEexper2
i +ui

▶ incomei :年収（万円）
▶ yeduci :修学年数（年）
▶ experi :就業可能年数（年）
▶ i :個人番号

を推定する．
å「年収の対数値」を「修学年数」と「就業可能年
数」と「就業可能年数の 2乗」に回帰する．
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▶ 就業可能年数
▶ 最後の学校を卒業してからの年数

就業可能年数 = 年齢 −修学年数 − 6.

※ 小学校に入学する年齢が 6歳のため，6を引いて
いる．

▶ 熟練度を表す．
⇒賃金に影響を与える．

⇓
修学年数が年収に与える純粋な効果を計測す
るには，熟練度（を表す就業可能年数)をコン
トロールする必要がある．
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ミンサー方程式の推定結果（デフォルト
の標準誤差を用いた場合）
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ミンサー方程式の推定結果（頑健標準誤
差を用いた場合）
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ミンサー方程式の推定結果

デフォルトの標準誤差を用いた場合と頑健標準誤差
を用いた場合では，
▶ 偏回帰係数推定値は同じ．

▶ 標準誤差が異なっていて，それに伴い，t 値や
p値が異なっている．
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不均一分散の検定
定数項以外に説明変数が 2つある重回帰モデル

yi = β0 + β1x1i + β2x2i + ui,

E(ui | x1i, x2i) = 0,
E(uiu j | x1i, x2i) = 0 (i ̸= j),

i = 1, 2, · · · , n.

を考える．このモデルにおいて，

V(ui | x1i, x2i) = σ2 （均一分散）

なのか

V(ui | x1i, x2i) = σ2
i （不均一分散）

なのかを検定したい．
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ここで，

V(ui | x1i, x2i) = E(u2
i | x1i, x2i) （証明は省略）.

⇓
E(u2

i | x1i, x2i)は，x1i と x2i を所与とした u2
i の条件

付き期待値で，それは u2
i を x1i と x2i に回帰して求

めるもの．

⇓
u2

i を x1i と x2i に回帰して，「x1i と x2i の偏回帰係数
がすべて（両方とも）0」を H0とする検定を行い，
H0が棄却されれば V(ui | x1i, x2i)が x1i と x2i の少
なくとも 1つに依存して一定でない不均一分散とな
り，H0が採択されれば V(ui | x1i, x2i)が x1i や x2i
に依存するとはいえず，不均一分散とはいえないこ
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⇓

ただ，誤差項の 2乗 u2
i は未知で，観測できない…

⇓

誤差項の 2乗 u2
i の代わりに，残差の 2乗 e2

i を用い
ればよい．
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Breusch-Pagan検定

▶ 仮説検定のための補助的な回帰を補助回帰
（auxiliary regression）という．

▶ 残差の 2乗を元のモデルのすべての説明変数
に補助回帰し，それの定数項を除くすべての説
明変数の（偏）回帰係数が 0であることを帰無
仮説とする検定を Breusch-Pagan検定
（Breusch-Pagan test）という．
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定数項以外に説明変数が 2つある重回帰モデルにお
いて，Breusch-Pagan検定を行う手順は，

1. yi を x1i と x2i に回帰する．すなわち

yi = β0 + β1x1i + β2x2i + ui

を推定する．そして残差 ei を求める．
2. e2

i を x1i と x2i に補助回帰する．すなわち

e2
i = γ0 + γ1x1i + γ2x2i + vi

を推定する．
3. 補助回帰の偏回帰係数について，

H0 : γ1 = 0 and γ2 = 0 vs H1 : γ1 ̸= 0 or γ2 ̸= 0

を F 検定またはカイ二乗検定により検定し，
H0の採択・棄却を判断する．
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Breusch-Pagan検定において，

H0 : γ1 = 0 and γ2 = 0 vs H1 : γ1 ̸= 0 or γ2 ̸= 0

の H0と H1の意味は，
▶ 帰無仮説：γ1, γ2がどちらもゼロ．

▶ 誤差項 ui は，V(ui | x1i, x2i)が x1i にも x2i にも依
存しない，一定の均一分散をもつ．

▶ 対立仮説：γ1, γ2のうち少なくとも 1つはゼロ
でない．

▶ 誤差項 ui は，V(ui | x1i, x2i)が x1i と x2i の少なく
とも 1つに依存する，一定でない不均一分散を
もつ．
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gretlで Breusch-Pagan検定を実行する
方法

▶ モデルを推定した後，結果ウィンドウの「検
定」→「不均一分散」→「Breusch-Pagan」と
操作すれば実行できる．

▶ モデルを推定する際，「頑健標準誤差を使用す
る」にチェックを入れても入れなくてもよい．

▶ gretlではカイ二乗検定が行われる．
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ミンサー方程式の Breusch-Pagan検定
結果
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▶ 検定統計量の実現値は 155.851516, p値は 0.
å仮に「誤差項の条件付き分散が一定（均一
分散をもつ）」だとすると，155.851516という
検定統計値は（ほぼ）0%の確率（1%を下回る
確率）でしか出てこない．
å有意水準 1%で，「誤差項の条件付き分散が
一定（均一分散をもつ）」の H0が棄却される
（5%や 10%でも棄却される）．
å誤差項の条件付き分散が一定でなく，不均
一分散をもつと判断される．
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White検定

▶ 残差の 2乗を元のモデルのすべての説明変数
の 1乗，2乗，および説明変数同士の積に補助
回帰し，それの定数項を除くすべての説明変数
の偏回帰係数が 0であることを帰無仮説とす
る検定をWhite検定（White test）という．
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定数項以外に説明変数が 2つある重回帰モデルにお
いて，White検定を行う手順は，

1. yi を x1i と x2i に回帰する．すなわち

yi = β0 + β1x1i + β2x2i + ui

を推定する．そして残差 ei を求める．
2. e2

i を x1i, x2i, x2
1i, x2

2i, x1i x2i に補助回帰する．す
なわち

e2
i = γ0+γ1x1i+γ2x2i+γ11x2

1i+γ22x2
2i+γ12x1i x2i+vi

を推定する．
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3. 補助回帰の偏回帰係数について，

H0 : (γ1, γ2, γ11, γ22, γ12)′ = (0, 0, 0, 0, 0)′

vs H1 : (γ1, γ2, γ11, γ22, γ12)′ ̸= (0, 0, 0, 0, 0)′

を F 検定またはカイ二乗検定により検定し，
H0の採択・棄却を判断する．
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White検定において，

H0 : (γ1, γ2, γ11, γ22, γ12)′ = (0, 0, 0, 0, 0)′

vs H1 : (γ1, γ2, γ11, γ22, γ12)′ ̸= (0, 0, 0, 0, 0)′

の H0と H1の意味は，
▶ 帰無仮説：γ1, γ2, γ11, γ22, γ12がすべてゼロ．

▶ 誤差項 ui の条件付き分散が一定（均一分散）．
▶ 対立仮説：γ1, γ2, γ11, γ22, γ12のうち少なくと
も 1つはゼロでない．

▶ 誤差項 ui の条件付き分散が一定でない（不均一
分散）．
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gretlでWhite検定を実行する方法

▶ モデルを推定した後，結果ウィンドウの「検
定」→「不均一分散」→「ホワイト (White)の
検定」と操作すれば実行できる．

▶ モデルを推定する際，「頑健標準誤差を使用す
る」にチェックを入れても入れなくてもよい．

▶ gretlではカイ二乗検定が行われる．
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ミンサー方程式のWhite検定結果
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▶ 検定統計量の実現値は 68.954503, p値は 0.
å仮に「誤差項の条件付き分散が一定（均一
分散）」だとすると，68.954503という検定統
計値は（ほぼ）0%の確率（1%を下回る確率）
でしか出てこない．
å有意水準 1%で，「誤差項の条件付き分散が
一定（均一分散）」の H0が棄却される（5%や
10%でも棄却される）．
å誤差項の条件付き分散が一定でなく，不均
一分散をもつと判断される．
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Breusch-Pagan検定とWhite検定

▶ ミンサー方程式の例では，Breusch-Pagan検定
とWhite検定で同じ判断が下された．

▶ ただし，Breusch-Pagan検定とWhite検定で異
なる判断が下される場合もある．
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今日のキーワード

一般化線形回帰モデル，不均一分散，頑健標準誤
差，補助回帰，Breusch-Pagan検定，White検定
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次回までの準備

▶ 今回の講義スライドを読み直す．

▶ 「提出課題 7」に取り組む．

▶ 教科書第 8章を読む．
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